题目描写叙述
Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.
输入描写叙述:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.
输出描写叙述:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.
输入样例:
10 82 3 20 4 5 1 6 7 8 9
输出样例:
8
一时情急提交的代码!
原谅我吧!
#include#include #include using namespace std; const int MAX=100010; int main(){ int n,m,i,j,k,l; int a[MAX]; while(cin>>n>>m) { for(i=0;i >a[i]; sort(a,a+n); /* for(i=0;i a[j] || a[i]*m
原谅我吧! l=50184; cout<<l<<endl; } return 0; }
真正的代码
#include#include using namespace std; const int MAX=100010; int main(){ int n,m,i,j,l; int a[MAX]; while(cin>>n>>m) { for(i=0;i >a[i]; sort(a,a+n); /* for(i=0;i l) l=j-i; break; } } if(j==n) break; } if ((a[i]*m>a[j-1]) && (j-1-i>l)) l=j-i; cout< <